Oxygen improves blood flow, restores more function in spinal cord injuries

Karim Fouad and post-doctoral fellows Yaqing Li (center) and Ana M. Lucas-Osma (right) and their team made a new discovery that could alter how we view spinal cord function and rehabilitation after spinal cord injuries.
Credit: Laurie Wang, University of Alberta

A new discovery at the University of Alberta will fundamentally alter how we view spinal cord function and rehabilitation after spinal cord injuries. Neuroscientists found that spinal blood flow in rats was unexpectedly compromised long after a spinal cord injury (chronically ischemia), and that improving blood flow or simply inhaling more oxygen produces lasting improvements in cord oxygenation and motor functions, such as walking.

Previous work had shown that while blood flow was temporarily disrupted at the injury site, it resumed rapidly, and it was more or less assumed that the blood flow was normal below the injury. This turns out to be wrong.

The Edmonton Journal with David Bennett Video

See the Full News Article at Science Daily HERE

Journal Reference:
Yaqing Li, Ana M Lucas-Osma, Sophie Black, Mischa V Bandet, Marilee J Stephens, Romana Vavrek, Leo Sanelli, Keith K Fenrich, Antonio F Di Narzo, Stella Dracheva, Ian R Winship, Karim Fouad, David J Bennett. Pericytes impair capillary blood flow and motor function after chronic spinal cord injury. Nature Medicine, 2017; DOI: 10.1038/nm.4331

Karim Fouad Links

This entry was posted in Chronic Spinal Cord Injury Research, Neuroscience Abstracts, Regenerative Medicine, Rehabilitation, Spinal Research and tagged , , , , , , , , , , , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s