With the right rehabilitation, paralyzed rats learn to grip again

After a large stroke, motor skills barely improve, even with rehabilitation. An experiment conducted on rats demonstrates that a course of therapy combining the stimulation of nerve fiber growth with drugs and motor training can be successful. The key, however, is the correct sequence: Paralyzed animals only make an almost complete recovery if the training is delayed until after the growth promoting drugs have been administered, as researchers from the University of Zurich, ETH Zurich and the University of Heidelberg reveal.

Only if the timing, dosage and kind of rehabilitation are right can motor functions make an almost full recovery after a large stroke. Rats that were paralyzed down one side by a stroke almost managed to regain their motor functions fully if they were given the ideal combination of rehabilitative training and substances that boosted the growth of nerve fibers. Anatomical studies confirmed the importance of the right rehabilitation schedule: Depending on the therapeutic design, different patterns of new nerve fibers that sprouted into the cervical spinal cord from the healthy part of the brain and thus aid functional recovery to varying degrees were apparent. The study conducted by an interdisciplinary team headed by Professor Martin Schwab from the Brain Research Institute at the University of Zurich and ETH Zurich’s Neuroscience Center is another milestone in research on the repair of brain and spinal cord injuries.

ORIGINAL ARTICLE WITH BEFORE AND AFTER VIDEO SEGMENTS FROM UNIVERSITY OF ZURICH :
(The download video segments are to the lower right).

This entry was posted in Biomaterials, Chronic Spinal Cord Injury Research, Regenerative Medicine, Rehabilitation and tagged , . Bookmark the permalink.