V. Reggie Edgerton, Ph.D.

He is a leading researcher in the field of neuromuscular plasticity.  UCLA distinguished professor V. Reggie Edgerton drills deeper into the breakthrough from 30 years of paralysis research, announced jointly by UCLA, the University of Louisville and Caltech.

Scientists have known for years that animals’ spinal cords contain networks of neurons called central pattern generators (CPG) that produce rhythmic flexing and extension of the muscles used in walking. They assumed, however, that the bipedal walking of humans was more dependent on voluntary control than on CPG activation. Therefore, scientists thought that without control from the brain, movements produced by a spinal CPG weren’t likely to be useful in restoring successful walking without regulation from the brain. Current research is showing, however, that these networks can be retrained after spinal cord injury to restore limited mobility to the legs.

Using a technique called sensory patterned feedback, researchers are attempting to retrain CPG networks in spinal cord injured patients with special programs that break down walking movements into their component patterns and force paralyzed limbs to repeat them over and over again. In one of these programs, the patient is partially supported by a harness above a moving treadmill while a therapist moves the patient’s legs in a stepping motion. Other researchers are experimenting with combining body weight support and electrical stimulation with actual walking rather than treadmill training.

Another technique uses an FES bicycle in which electrodes are attached to hamstrings, quadriceps, and gluteal muscles to stimulate the pedaling motion. Several studies have shown that these exercises can improve gait and balance, and increase walking speed. NINDS is currently funding a clinical trial with paraplegic and quadriplegic subjects to test the benefits of partial weight-supported walking.

A large amount of this research is being done in Louisville with Dr. Susan Harkema. 


This entry was posted in Chronic Spinal Cord Injury Research, Regenerative Medicine, Rehabilitation. Bookmark the permalink.